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ON THE STABILITY OF THREE-DIMENSIONAL BOUNDARY LAYERS

PART 1: LINEAR AND NONLINEAR STABILITY �

ERIK JANKE AND PONNAMPALAM BALAKUMAR

Abstract. The primary stability of incompressible three-dimensional boundary layers is investigated

using the Parabolized Stability Equations (PSE). We compute the evolution of stationary and traveling

disturbances in the linear and nonlinear region prior to transition. As model problems, we choose Swept

Hiemenz Flow and the DLR Transition Experiment. The primary stability results for Swept Hiemenz Flow

agree very well with computations by Malik et al. For the DLR Experiment, the mean ow pro�les are

obtained by solving the boundary layer equations for the measured pressure distribution. Both linear and

nonlinear results show very good agreement with the experiment.

Key words. PSE, crossow instability, 3D boundary layers

Subject classi�cation. Fluid Dynamics

1. Introduction. The transition process without bypass in a three-dimensional boundary layer ow

can be described by �ve main phases. First, in the receptivity phase, disturbances determined by the outer

conditions (surface roughness, freestream turbulence, acoustic noise) are entering the boundary layer. In the

region of their introduction, a wide spectrum of disturbances is present. Many of these initial disturbances

decay, however, and only a few are ampli�ed in the downstream ow. Second, the phase of exponential

growth sees a slow amplitude growth of the few unstable modes. Due to its linearity, this phase can be well

described by following the most unstable mode. Third, in the phase of nonlinear interaction, the disturbance

amplitudes are large enough to interact nonlinearly, the uniform spanwise mean ow is modulated by the

disturbances, and a disturbance saturation into an equilibrium stage can be observed. The location of the

saturation onset, as well as the saturation amplitude level are strong functions of the initial conditions of

disturbance amplitude, frequency and phase, which are determined by the receptivity mechanism. In this

third phase, the mean ow pro�les are being distorted, the well known co-rotating crossow vortices are

fully developed, and the boundary layer thickness varies strongly in spanwise direction. Due to the strong

distortion of the boundary layer, inectional mean ow pro�les develop and we can distinguish a fourth

phase, in which the boundary layer becomes unstable to three-dimensional high-frequency disturbances.

The frequencies observed in this phase are an order-of-magnitude higher than the primarily unstable ones

and this mechanism is usually referred to as secondary instability. Finally, an explosive growth of these

high-frequency modes initiates the �fth phase, the breakdown to turbulence.

In the research of purely crossow instability dominated incompressible boundary layers, signi�cant

progress was made within the last years. Pioneering experiments, in particular performed in G�ottingen,

Germany and in Tempe, Arizona, U.S.A., are accompanied by computational work that lives more and more

up to the challenge of guiding the experiments. Using the Parabolized Stability Equations (PSE), Malik

et al. [17] showed for Swept Hiemenz Flow that including traveling disturbances with a small amplitude

in the analysis can signi�cantly decrease the saturation amplitude and inuence the onset of saturation in
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comparison with a purely stationary computation. Incorporating the receptivity to surface roughness in

his PSE computations for the DLR Transition Experiment and also introducing initially small amplitude

traveling modes, Bertolotti [4] arrived at results that are in excellent agreement with the measurements.

Joslin and Streett [13] showed for stationary crossow vortices that prior to the nonlinear interaction of

the disturbances, linear superposition of the smaller amplitude modes can explain wave angle and phase

adjustments observed in experiments by Arnal and Juillen [1]. Also, results by Kohama et al. [14] and

Reibert et al. [18] for a swept wing boundary layer in very benign environmental conditions showed the

existence of a high-frequency secondary instability that is caused by the inectional deformation of the mean

ow pro�les.

In the present paper, we study the linear, nonlinear and secondary stability of the Swept Hiemenz Flow

model problem and of the crossow dominated boundary layer ow in the DLR Transition Experiment. For

the sake of a more systematic presentation of the results, we divide the paper in two parts. Starting from

a mean ow computation and a nonlinear stability analysis, we obtain the equilibrium solutions for each

problem using the PSE in Part 1. In Section two of Part 1, we describe the present formulation for the mean

ow computation and the primary stability analysis using the PSE. Sections three and four contain results

from linear and nonlinear PSE computations for Swept Hiemenz Flow and the DLR Transition Experiment,

respectively. We then determine the local stability characteristics in the equilibrium region using temporal

Floquet analysis in Part 2 of this paper. There, the main focus is on investigating the existence of multiple

roots in the eigenvalue spectrum of the modi�ed mean ow in the region of nonlinear disturbance saturation.

2. Formulation. In this section, we present the mean ow computation and describe the PSE formula-

tion. Figure 2.1 shows the coordinate systems that we use in the computations. The coordinates (x1 ; x2 ; x3 )

represent the body-�xed coordinate system, and the (�x1 ; �x2 ; �x3 ) coordinates stand for the vortex-oriented

system which is applied in the secondary stability analysis.

Fig. 2.1. Body-�xed (x1 ; x2 ; x3 ) and Galilean coordinate system (�x1 ; �x2 ; �x3 )

2.1. Basic Flow. For a general quasi-three dimensional geometry and a corresponding coordinate sys-

tem (Figure 2.1), we de�ne a steady incompressible basic ow Q0 (x1 ; x2 ; x3 ) = fU0 ;W0 ;V0 ;P0g
T . Assum-

ing no variations of the basic ow in the spanwise direction, introducing a stream function � (Equation 2.1),

and de�ning the mean ow components according to Equation 2.2:

� =
p
��x�1U

�

e f (x
�

1 ; �) ; � =
x�3p

��x�1 =U
�

e

; m =
x�

U �

e

�
dU �

e

dx�1
;(2.1)

U �

0 = @�=@x�3 ; V �

0 = �@�=@x�1 ; W �

0 =W �

1
� g(x�1 ; �) ;(2.2)
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we can write the boundary layer equations and the boundary conditions for a quasi-three-dimensional ow

in the following form, where primes denote di�erentiation with respect to � :

f 000 +
m + 1

2
f � f 00 +m � (1 � f 0

2

) = x1 � (f
0 �

@f 0

@x1
� f 00 �

@f

@x1
) ;

g 00 +
m + 1

2
f � g 0 = x1 � (f

0 �
@g

@x1
� g 0 �

@f

@x1
) ;(2.3)

f = f 0 = g = 0 at � = 0 ; f 0 = g = 1 at � !1 :

Here, U �

e is the inviscid velocity in the chordwise direction, W �

1
is the constant inviscid velocity in the

spanwise direction, and m is the similarity parameter. This set of equations is solved using the two-point,

fourth-order-accurate compact scheme ([16]) in the wall normal direction and a second-order-accurate three

point upwind scheme in the streamwise direction.

2.2. Parabolized Stability Equations. In the Parabolized Stability Equations approach, one at-

tempts to construct an approximate solution of the Navier-Stokes Equations. The concept was introduced

by Herbert and Bertolotti [10] and applied to linear and nonlinear Blasius boundary layer ow by Bertolotti

et al. [3]. Now, it has been well developed and applied to two- and three-dimensional incompressible and

compressible boundary layer ows [6, 2, 17].

If we write the total ow quantity Q=fV;PgT=fU ;W ;V ;PgT as the summation of the mean ow

Q0=fV0 ;P0g
T=fU0 ;W0 ;V0 ;P0g

T and the disturbance q1=fv1 ; p1g
T=fu1 ;w1 ; v1 ; p1g

T , the Navier-Stokes

equations for the disturbances quantities become :

r � v1 = 0 ;(2.4)

@v1
@t

+ (v1 � r)v1 + (V0 � r)v1 + (v1 � r)V0 = � rp1 +
1

Re
r2v1 :(2.5)

The central idea of the PSE formulation is to split the disturbance quantities into a slowly varying shape

function and an oscillatory wave part as:

q1 (x1 ; x2 ; x3 ; t) =

1X
n=�1

1X
m=�1

q̂1 ;mn(x1 ; x3 )e
i
R
�1;mndx1+im�1x2�in!t ;(2.6)

where �1 is the spanwise wave number, ! is the frequency, �1 is the wave number in the streamwise

direction, and q̂1 ;mn is the vector of the shape functions. The indices m and n are the Fourier summation

indices and also denote the mode number (m,n). Substituting this into Equations 2.4, 2.5 and neglecting

the second derivative of the shape function in the x1 -direction, we obtain the PSE (Equation 2.7) for each

Fourier component. In Equation 2.7, the vector Smn represents the Fourier component of the nonlinear term

(v1 � r)v1, and A, B, C, D, E are (4 � 4) coe�cient matrices.

Amn

@2q̂1 ;mn

@x23
+ Bmn

@q̂1 ;mn

@x3
+ Cmn q̂1 ;mn = Dmn

@q̂1 ;mn

@x1
+ Emn

@2q̂1 ;mn

@x1@x3
+ Smn(2.7)

We note that the linear PSE are obtained by setting the indices m and n in Equation 2.7 to one, and by

dropping the nonlinear term Smn . Further, assuming that the amplitude part q̂1 of the disturbance quantity
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is no longer a function of the streamwise location, but depends only on the normal coordinate, the two

remaining terms on the right hand side of Equation 2.7 vanish and we obtain the linear stability equation.

In the spatial framework of the PSE, we have the unknown wave numbers �1 , �1 , and the frequency

! in addition to the unknown shape functions q̂1 . Fixing the real frequency ! and the real spanwise wave

number �1 , a relation to determine the complex streamwise wave number �1 is still missing. This forms

the main di�culty in the PSE formulation, since both the shape functions and the phase of the disturbance

quantities depend on the streamwise coordinate (Equation 2.6). In a non-parallel mean ow, the di�erent

physical quantities grow at di�erent rates, and thus, one can determine the growth rate �1=-�1 ;imag only

from the computed wave number �1 based on some quantity (e.g., velocities, pressure, or energy). Usually,

the wave number �1 is computed at the location in the boundary layer where the disturbance quantities

become maximal. This location slowly varies in the marching direction. The procedure to compute �1 at a

streamwise station is described as follows. Starting with an initial guess that is found by solving the linear

eigenvalue problem at x1 = x0 , one marches to the next station x1 = x0 + �x1 and solves for the shape

functions q̂1 assuming that �1 (x1 = x0 +�x1 ) = �1 (x0 ). Approximating the change in the shape functions

with a Taylor Series at x1 = x0 +�x , one can derive Equation 2.8 to update �1 at x1 = x0 +�x1 as :

�1 ;new = �1 ;old +
1

i � q̂1

�
@q̂1
@x1

�
x3=x3 (q̂1;max )

;(2.8)

where q̂1 stands for any physical quantity in the ow �eld. Updating the shape functions and iterating until

the change in �1 is less than a de�ned tolerance, the solution at this station is obtained and the procedure

repeated at the next streamwise station. The PSE method is very e�cient, since it takes only a few iterations

on �1 to obtain an accurate solution, provided that the gradients in the ow�eld are moderate. In our formu-

lation, the PSE are solved by introducing a new vector of unknowns q1=fû1 ; @û1=@x3 ; û2 ; @û2=@x3 ; û3 ; p̂1g
T

that allows for a discretization of the wall-normal direction using the two-point, fourth-order-accurate com-

pact scheme [16]. For the derivatives in the streamwise direction, we employ a �rst-order-accurate two-point

upwind scheme.

3. Swept Hiemenz Flow.

3.1. The Basic Flow. The model problem of Swept Hiemenz Flow represents an exact solution to the

Navier-Stokes Equations and can be used to model the leading edge region of a swept wing. The inviscid

velocity distributions are given by:

U � = c � x�1 ; V � = �c � x�3 ; W � =W �

1
= const : :(3.1)

Further, we de�ne the nondimensional frequency F, the constant local length scale l�, and the stream- and

spanwise Reynolds numbers Re and �Re, respectively, in Equation 3.2. The mean ow pro�les can be obtained

F = 2���f �=(W �

1
)2 ; l� =

p
��=c ; Re =

U �

1
� l�

��
; �Re =

W �

1
� l�

��
(3.2)

by solving the Falkner-Skan-Cooke equations ([15, 17]), which are the homogeneous version of Equations 2.3

with m=1. The results are obtained for �Re=500, F= 0.75�10�4 and a spanwise wave number of �1=0.4.

The chosen value for F is close to the most ampli�ed frequency for this ow.

3.2. Nonlinear Analysis. Following the previous work by Malik et al. [17], we investigate the evolution

of stationary and traveling disturbances with and without wave interaction. In particular, we consider the

interaction of a stationary and a traveling disturbance of similar initial amplitude, as well as the interaction of

a stationary disturbance with larger amplitude and a traveling disturbance with smaller amplitude. Figure 3.1
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Fig. 3.1. Growth rates based on disturbance-energy

shows the growth rates for di�erent initial amplitude levels Â. The rms-amplitude Â is de�ned by Â =p
(u21 + w2

1 )max=W1, and the computed initial disturbances are introduced at Re=186. The computations

are performed including eight modes in the spanwise and frequency domain and the results agree with the

results by Malik et al. [17]. It can be seen from Figure 3.1 that the interaction of a larger amplitude stationary

with a smaller traveling disturbance leads to an earlier saturation of the stationary disturbance. On the other

hand, the nonlinear evolution of the traveling disturbance is not a�ected by the stationary vortex when both

initial modes are of similar amplitude.

The inuence of including a small amplitude traveling disturbance in the computations is presented in

Figures 3.2 and 3.3, where we show the evolution of the stationary and traveling disturbance amplitudes.

In Figure 3.2, we plot the results for the purely steady case, and in Figure 3.3 for a case where a small

amplitude traveling disturbance interacts with the stationary vortex. The latter case will be referred to as

the \lower-frequency" case from now on. For the purely stationary case, we observe that both the u1 - and

w1 -components are fully saturated at Re ' 550, and that the saturation amplitude levels are Âs ' 24% for

the u1 -component and Âs ' 17% for the w1 -component. For the \lower-frequency" case with a primary

frequency of F=0.75�10�4, we see that the stationary disturbances saturate at Re ' 480 and the amplitude

levels are Âs ' 10% and Âs ' 8% for the u1 and w1 -component, respectively. Also, since the traveling

disturbances grow longer in that case (see curve 4a in Figure 3.1), they reach larger amplitude levels than

the stationary disturbances.

Next, we document various velocity pro�les for the purely stationary case. At the streamwise location

where the stationary disturbances are saturated (Re=546), we plot the shapes of the individual Fourier

modes for the velocity components along the stationary vortex (w1 ), and perpendicular to it (u1 ) in the

Galilean coordinate system (�x1 ; �x2 ; �x3 ) in Figure 3.4. Obviously, the �rst seven modes of the component
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along the vortex contain important information, and thus, it is advisable to include at least eight modes in

the computation. We also observe that the fundamental mode �1 along the stationary vortex is very large

at this Reynolds number (Â ' 30%) and shows the typical structure observed in the experiments just before

the secondary instability mechanism causes transition.

200 300 400 500 600
10-6

10-5

10-4

10-3

10-2

10-1

100

A

Re

As=0.1% , At=0.0%

U

V

W

P

Fig. 3.2. Amplitudes of the primary disturbances for the purely stationary case
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Fig. 3.3. Primary disturbance amplitudes for the \lower-frequency case" (solid : traveling mode; hollow : steady mode)
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Fig. 3.4. Shape functions of individual modes at Re=546

Figure 3.5 shows the total velocity component tangential to the stationary vortexW2 in the �x1 ; �x3 -plane

at four di�erent locations within one wavelength perpendicular to the vortex. Finally, in Figures 3.6a)-

d), we show the total velocity components (mean ow and disturbance) along the stationary vortex (W2 )

and in the wall-normal direction (V2 ) at two streamwise positions and at di�erent normal locations. At

Re=486, a developed peak-valley structure of the W2 -component is observed, and spanwise gradients in

the normal velocity component are seen as well. At Re=546, however, an intricate spanwise variation of

both plotted velocity components is noted. The increased inectional character of the spanwise velocity

pro�les corresponds to the growing instability of the ow. Further, the strong spanwise gradients in the

wall-normal velocity component (see Figure 3.6(d)) indicate the presence of a strong localized uid-exchange

mechanism between the wall region and the outer ow. As in Figure 3.5, the inectional character of the

pro�les is clearly observed. These strongly inectional pro�les in all coordinate directions are the origin of

the secondary instability that will be studied in Part 2 of this paper.

0.0 0.5 1.0 1.5
0

1

2

3

4

5

6

W2

X3

x1=0

x1=0.5 π/α3

x1=1.0 π/α3

x1=1.5 π/α3

Fig. 3.5. Total ow quantity at di�erent spanwise stations for Re=546
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Fig. 3.6. Horizontal cuts of the modi�ed mean ow at two streamwise locations ( a), b) at Re=486; c), d) at Re=546 )

4. DLR Transition Experiment. In this section, we investigate the linear and nonlinear evolution of

stationary and traveling disturbances for the experiment reported by Deyhle and Bippes [9]. The experimen-

tal pressure gradient across the entire swept at plate is favorable, and hence, the transition in the boundary

layer is dominated by a purely crossow type instability. Because of the wide variety of the investigated

parameters and the well documented experimental data, this transition experiment is of high value for a

numerical investigation of the crossow instability mechanisms.

4.1. The Basic Flow. The experiment was performed for a freestream velocity of Q�

1
=19 m/s, a

sweep angle of �=45�, and a chord length of the model of c�=0.5m. In order to compensate for blockage

e�ects and problems with the simulation of in�nite swept wing conditions using end plates, Deyhle and

Bippes [9] suggest the use of Q�

1
=20.5 m/s and �=43.5� instead. Our computations are done for the latter

parameters and a Reynolds number based on the chord length of Re1=683,000, where Re1=Q�

1
� c�=��.

Further, we use U �

e;0 and l�0=(�
� � x�1 ;0=U

�

e;0 )
1=2 as the velocity scale and length scale, respectively, where

x�1 ;0 and U �

e;0 are the streamwise coordinate and the freestream velocity in the x1 -direction at the location

where we introduced the disturbances. The turbulence level during the experiment is speci�ed as Tu=0.15%.

Even though this value represents a fairly benign environment, it is still high in comparison to the turbulence

level present in the experiments performed by Reibert et al. [18] and Saric et al. [19] where they quote a
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value of Tu=0.04% at a speed of Q�

1
=20 m/s ([7]). In the DLR Experiment, traveling modes are present

in the ow and one needs to consider these in the computations when comparing with the experimental

results. Further, the fact of the initial presence of traveling modes complicates the isolation of the physical

mechanisms considerably.

In contrast to previous work which used a Falkner-Skan-Cooke (FSC) similarity solution to �t the

measured data, we compute the mean ow pro�les directly from the measured outer velocity distribution

that was obtained by courtesy of the DLR (Bertolotti [5]) and is given in Figure 4.1. In Figure 4.2, we

compare the boundary layer pro�les along the inviscid streamline Ut and the crossow velocity pro�les Uc

resulting from the present approach and the FSC solution (Deyhle and Bippes [9]) with the experiment. We

note a good agreement of the computed with the measured pro�les.

0.0 0.5 1.0
0

5

10

15

Ue

[m/s]

x1/c
0.0 0.5 1.0

40

50

60

70

80

90

Θ
[deg]

x1/c

Fig. 4.1. Measured outer velocity distribution and angle of inviscid streamline
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Fig. 4.2. Mean ow pro�les tangential and perpendicular to the streamline at x1 =c=0.4
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4.2. Linear Stability Analysis. First, we conduct a local stability analysis of the undisturbed mean

ow. In the spatial formulation of the local stability analysis, we consider a normal mode of the form :

q1 (x1 ; x2 ; x3 ; t) =q̂1 (x3 )e
i�1 x1+i�1 x2�i!t ;(4.1)

where �1 is the complex wave number in the chordwise direction, �1 is the real wave number in the spanwise

direction, and ! is the real frequency. The wave vector kreal , the wavelength � and the wave angle 	1 are

de�ned in Equation 4.2.

kreal = f�1 ;real ; �1g
T ; � =

2�q
�21 ;real + �21

=
2�

jkreal j
;	1 = tan�1

�1
�1 ;real

(4.2)

According to Mack (1984), two families of most unstable modes are present in three-dimensional boundary

layers. Figure 4.3 depicts the propagation direction of the two unstable families. It also de�nes 	 as the

angle between the wave vector kreal and the inviscid streamline.

Leading edge
                 Q

        Inviscid Streamline

Wave vector
    Ψ(α <0, β >0)

   
      x  , β  Θ         

      Ψ(α >0, β <0)
      

              x  , α

12

oo

1 1

1 1

1 1

Fig. 4.3. De�nition of the wave angle 	 and the angle of the inviscid streamline �

In order to compare our linear results with experimental data, we consider the experiment performed

by Deyhle et al. [8]. First, we show two unstable disturbance families for the arbitrary frequency of f �=150

Hz versus the wavelength in the spanwise direction ��x2 . From Figure 4.4, it is seen that the more unstable

disturbances (�1 > 0 ) propagate in the direction of the centrifugal force induced by the inviscid streamline.

-20 -10 0 10 20 30
0.000

0.005

0.010

0.015

0.020

50
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70

80

90

100

λx2 [mm]

σ1
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-Ψ

ΨΨΨσ1σ1

σ1σ1

Fig. 4.4. Two unstable disturbance families (x1 =c=0.7, f �=150 Hz)
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Second, we compute wavelength, wave angle and phase speed at a streamwise location of x1=c=0.7 as

functions of the frequency by solving the spatial eigenvalue problem. Considering the temporal eigenvalue

problem, the group velocity was determined. In Figures 4.5 and 4.6, we plot the wave angle 	 relative to

the angle of the inviscid streamline, the wavelength � = 2�=jkreal j, the phase speed Cphase = !=jkreal j and

the group velocity Cgroup = j@!=@kreal j for both families. The results are presented for the most unstable

wave at a �xed frequency. Between the two modes with positive and negative �1 , the mode with a positive

spanwise wave number has the largest growth rate. It is this family with a positive �1 that seems to match

the experimental results reasonably well. Considering the results for the wave angle, the wave length and

the phase velocity, we note a better agreement with the experiment than for the group velocity results.

However, Deyhle et al. [8] report experimental uncertainties in determining the group velocity, which might

also account for the deviations in these results.
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Fig. 4.5. Experimental results and local theory at x1 =c=0.7
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Next, and reconsidering the experiment described in Section 4.1, we show the results of a local stability

analysis performed at di�erent streamwise locations. Thereby, the critical points and the locally most

ampli�ed steady and traveling disturbances are determined.

In Figure 4.7, the nondimensional growth rates �1 for stationary disturbances are plotted versus the span-

wise wave number �1 at di�erent chordwise positions. It can be seen that the local theory predicts an increase

of the unstable spanwise wave number range in the downstream direction for the stationary disturbances.

The critical point for the stationary disturbances is found at x1=c=0.067 for �1=0.174 (�
�

x2
=10.5mm). The

locally most ampli�ed wave number is determined as �1=0.295 at x1=c=0.40, where the chordwise wave

number is �1=(-0.33509,-0.01401). Table 1 contains the locally most ampli�ed spanwise wave numbers, as

well as the corresponding growth rates, dimensional spanwise wavelengths and wave angles.

0.0 0.2 0.4 0.6 0.8
0.000

0.005

0.010

0.015

σ1

β1

x1/c=0.07

x1/c=0.10

x1/c=0.20

x1/c=0.30

x1/c=0.40

x1/c=0.50

x1/c=0.60

x1/c=0.70

x1/c=0.80

Fig. 4.7. Stationary growth rates from a local analysis

Table 1: Locally most ampli�ed eigenpairs at di�erent chordwise locations (f �=0 Hz)

x1=c �1 = max : �x2 ;�1=max [mm] �1 ;�1=max : 	�1=max :

0.07 0.00033 10.43 0.177 87.60o

0.10 0.00289 10.92 0.193 87.45o

0.20 0.00858 11.46 0.234 86.89o

0.30 0.01209 11.31 0.269 86.28o

0.40 0.01401 11.23 0.295 86.09o

0.50 0.01387 11.57 0.308 85.70o

0.60 0.01310 12.27 0.309 86.54o

0.70 0.01279 13.02 0.308 86.48o

0.80 0.01317 13.32 0.313 86.18o

It is observed that the wave angle of the most ampli�ed stationary disturbances remains almost constant

in the chordwise direction. The constant phase lines of the most unstable stationary disturbances are inclined

at angles less than �ve degrees with respect to the inviscid streamline.

Third, we introduce stationary and traveling disturbances separately at x1=c=0.06 and perform a linear

PSE analysis to determine both the most ampli�ed frequency and spanwise wave number. In Figure 4.8,
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we show a comparison of the linear PSE computation for the stationary disturbance components with

measured data of Deyhle and Bippes [9]. The results are presented for the velocity components in the

directions tangential and perpendicular to the inviscid streamline. Both the locally parallel and linear PSE

computation capture the essential features of the measured disturbance pro�les like the triple-peak structure

and the location of the crossow-component maximum very well. Despite the good qualitative agreement of

the computed crossow component with the experimental results, we note that the magnitudes obtained from

measurement and computation di�er by a factor of two. This was also reported by Deyhle and Bippes [9]

and is attributed to the presence of small spanwise gradients in the mean ow. Further, the local theory is

predicting a slightly too high peak location of the tangential component, whereas the linear PSE matches

the experimental data better.
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Fig. 4.8. Stationary disturbance pro�les from experiment and computation at x1 =c=0.6

Finally, Figure 4.9 shows both the calculated linear and nonlinear growth rates based on the u1 -

component, as well as the N-factors for the most ampli�ed modes. The obtained values for the most ampli�ed

spanwise wavelength ��x2=12mm, the most ampli�ed frequency f �=178Hz, and the maximum N-factor of

N'16 for the traveling disturbance agree exactly with previous work [4]. We also note from Figure 4.9, that

the traveling disturbances are much more ampli�ed than the stationary disturbances.

4.3. Nonlinear Analysis. Since our formulation does not include the receptivity to freestream tur-

bulence or surface roughness, we match the initial amplitudes of the disturbances with those given by

Bertolotti [4] at x1=c=0.1. The amplitude is de�ned as A = ju1 jmax=U1. For As;u = 0.04% in the body-�xed

coordinate system, we obtain the same value for the disturbance component along the inviscid streamline

utang;avg = (utang;max � utang;min)=2 at x1=c=0.1 as shown by Bertolotti. Here, the subscripts max and

min stand for the maximum and minimum value of an average in the spanwise direction. For the nonlinear

computations in this section, we include eight modes in spanwise direction and four modes for the frequency.

As reported by Bertolotti [4] and in Section 3.2, we �nd that the purely stationary disturbance saturates at

a higher amplitude level and a later streamwise location than in the experiment. Therefore, we include a

small amplitude traveling disturbance with the most ampli�ed frequency of f �=178Hz in the computations

(At;u = 0.004%).
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Fig. 4.10. Amplitude growth from experiment and computation

In the nonlinear cases, the wave number and frequency domains are modeled using 8�4 modes for �1

and !, respectively. Allowing for the nonlinear interaction of these disturbances, the saturation onset is

shifted upstream and the saturation amplitude decreases. Figure 4.10 shows the measured and computed

evolution of the disturbances along the chord. We observe that the saturation onset is predicted slightly

late, but the experimental saturation amplitude is matched quite well.

Next, we describe the spatial development of the crossow vortices. Figure 4.11 shows the u1 -disturbance

component at x1=c=0.5, 0.6, and 0.7 for both the purely stationary and the interaction case together with

the experimental data at x1=c=0.6. It is seen that the purely stationary vortices from the computation at

x1=c=0.6 are further developed than the measured vortices. Both their extension in the normal direction

and their degree of distortion are overpredicted. In the interaction case, however, the normal extension of

the vortices has decreased to the experimental value, but the structure of the vortices is more distorted

than shown in the experimental results. This di�erence may be attributed to the longer growth of the
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disturbances in the computation that results into an earlier development of the roll-over of positive and

negative disturbance components.

Experimental data at x1 =c=0.60 (Bertolotti, 1996)
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Fig. 4.11. Total u1 -disturbance quantity from a PSE computation

In order to further describe the purely stationary vortex that will be investigated for its instability to

three-dimensional high-frequency secondary disturbances in Part 2 of the paper, we show the shape functions

of the individual modes and the total velocity component along the stationary vortex at di�erent spanwise
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positions in Figures 4.12 and 4.13, respectively. Here, u1 and w1 are the velocity components perpendicular

and tangential to the constant phase lines (see Figure 2.1).
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Fig. 4.12. Shape functions of individual modes at two streamwise locations

For the two streamwise positions we selected, it can be seen from Figure 4.10 that the stationary

disturbances are about to saturate at x1=c=0.6 where they reach amplitudes of As;u ' 20%. At x1=c=0.7,

they are fully saturated at an amplitude level of As;u ' 30%. As observed for Swept Hiemenz Flow in Section

3.2., Figure 4.13 reveals the presence of highly inectional pro�les at both streamwise locations. Comparing

the results presented in Figure 4.12 with the shape functions for Swept Hiemenz Flow in Figure 3.4, we

note the very similar shape and even magnitude of the individual shape functions in this region of nonlinear

saturation of the stationary crossow vortex.
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Fig. 4.13. Total ow quantity along the stationary vortex for di�erent spanwise stations

Summarizing the previous plots and visualizing the spatial development of the ow in the region of

nonlinear saturation, we plot the development of the crossow vortices for both the purely stationary and

the interaction case in Figures 4.14 and 4.15. Shown are the contours of the total velocity component in the

chordwise direction in the region between 50% and 70% chord length, where the nonlinear interaction of the

disturbance components dominates the physics of the ow. Clearly observed are the developing distortion

of the boundary layer at x1=c=0.50, and the roll-up of the vortices in the positive spanwise direction in the

purely stationary case. For the interaction case at time T=0, we �rst note that the disturbances do not

reach as far into the outer ow and the lift-up of low-speed uid away from the wall is not as strong as in the

stationary case. Second, we see a strong vortex core away from the wall at a location where the stationary

vortex rolls over.
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Fig. 4.14. Evolution of crossow vortices : Stationary vortex
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Fig. 4.15. Evolution of crossow vortices : Interaction case at T=0

5. Conclusion. In the present paper, we studied the linear and nonlinear stability of crossow domi-

nated three-dimensional boundary layers using the PSE. We investigated Swept Hiemenz Flow and the DLR

Transition Experiment. We described the structure of the stationary vortex in the region of nonlinear satu-

ration in detail. Investigating the DLR Experiment, we computed the mean ow directly from the measured

pressure distribution. The linear results for wave angle, wavelength and phase velocity obtained by spatial
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theory agree reasonably well with the experimental results. Better agreement was found for the disturbance

eigenfunctions. From our nonlinear computations, we could con�rm that including a small amplitude travel-

ing mode in the analysis decreases the saturation amplitude of the physical velocity component signi�cantly,

and our results match the spanwise averaged experimental data well. For both investigated problems, we

documented the existence of strongly inectional pro�les along the direction of the statio nary vortex in

the region of nonlinear saturation. It seems that a very strong fundamental mode and a large mean ow

distortion are the key-players in setting up the ow for a high-frequency secondary instability that will be

investigated in Part 2 of this paper.
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